NAS(神经架构搜索)基准数据集

在 NAS(神经架构搜索)任务中,基准数据集是指专门设计并提供固定的搜索空间、评价指标和预训练结果的数据集,用于公平评估和比较不同 NAS 算法的表现。以下是一些专门用于 NAS 研究的基准数据集:

1. NAS-Bench-101

  • 简介: NAS-Bench-101 是一个针对 NAS 任务的早期基准数据集,包含一个预定义的搜索空间,允许研究者直接查询400,000个架构的性能。
  • 特点:
    • 预定义的架构搜索空间。
    • 通过查询获得模型在 CIFAR-10 上的训练结果。
    • 大大减少了 NAS 任务中的计算开销。
  • 应用: 用于架构搜索算法的效率对比。
  • 网址: NAS-Bench-101

2. NAS-Bench-201

  • 简介: NAS-Bench-201 是 NAS-Bench-101 的扩展版,提供了一个更灵活的搜索空间和多任务的性能数据。该数据集支持 CIFAR-10、CIFAR-100 和 ImageNet-16-120 三个数据集。
  • 特点:
    • 更紧凑的搜索空间,适合更广泛的 NAS 研究。
    • 提供了架构在不同数据集上的完整训练和验证性能。
  • 应用: 可用于 CIFAR-10、CIFAR-100 和 ImageNet 任务中的架构搜索对比。
  • 网址: NAS-Bench-201

3. NAS-Bench-301

  • 简介: NAS-Bench-301 提供了一个模拟 NAS-Bench-201 的复杂版本,专为 DARTS(微型架构搜索)设计。它包含了 DARTS 搜索空间中的架构,并且通过预测器模型来估算性能。
  • 特点:
    • 预测器估算模型性能,减少实际训练所需的时间。
    • 提供了DARTS的搜索空间。
  • 应用: 用于优化微型架构搜索方法的研究。
  • 网址: NAS-Bench-301

4. NAS-Bench-Macro

  • 简介: NAS-Bench-Macro 专注于宏观结构搜索。与其他 NAS 数据集不同,它允许在更大的模型空间中探索大型架构的设计。
  • 特点:
    • 提供了更复杂的宏观搜索空间。
    • 针对 CIFAR-10 的模型评估。
  • 应用: 研究大型深度神经网络的设计与搜索。
  • 网址: NAS-Bench-Macro

5. NAS-Bench-NLP

  • 简介: NAS-Bench-NLP 是一个针对自然语言处理任务的基准数据集,旨在搜索用于文本分类的神经网络架构。它是第一个面向 NLP 任务的 NAS 基准。
  • 特点:
    • 专门为自然语言处理任务设计的搜索空间。
    • 预定义的架构和性能数据,可用于快速评估。
  • 应用: 研究 NLP 领域的架构搜索。
  • 网址: NAS-Bench-NLP

6. TransNAS-Bench-101

  • 简介: TransNAS-Bench-101 是一个多任务 NAS 基准数据集,涵盖视觉任务中的图像分类、目标检测、图像分割等多种任务。它使用不同的任务类型生成搜索空间并提供性能评估。
  • 特点:
    • 涵盖多任务(例如图像分类、目标检测、图像分割等)。
    • 提供了跨任务的架构搜索性能评估。
  • 应用: 多任务学习中的架构搜索和迁移学习研究。
  • 网址: TransNAS-Bench-101

7. FBNet/NAS-Bench-360

  • 简介: NAS-Bench-360 是 Facebook 提出的一个基准测试集,包含了用于多种任务的架构和性能数据。该数据集涵盖了各种复杂的现实任务,如图像、语音、文本等。
  • 特点:
    • 跨越多个领域的任务。
    • 面向生产环境的真实数据。
  • 应用: 在多个任务领域中测试架构搜索性能。
  • 网址: NAS-Bench-360

这些基准数据集允许研究人员快速测试和比较 NAS 算法的性能,从而加快架构搜索过程,同时为不同任务提供统一的评价标准。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/879881.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

《深度学习》—— 神经网络模型对手写数字的识别

神经网络模型对手写数字的识别 import torch from torch import nn # 导入神经网络模块 from torch.utils.data import DataLoader # 数据包管理工具,打包数据, from torchvision import datasets # 封装了很多与图像相关的模型,数据集 from torchvi…

神经网络 卷积层 参数共享

参数共享常用于神经网络卷积层中,共享的实际上就是说卷积核中的参数一直保持不变,如下所示就可以称为共享参数啦!!

【秋招笔试-支持在线评测-试读版】9.19小米秋招(已改编)-三语言题解

🍭 大家好这里是 春秋招笔试突围,一起备战大厂笔试 💻 ACM金牌团队🏅️ | 多次AK大厂笔试 | 大厂实习经历 ✨ 本系列打算持续跟新 春秋招笔试题 👏 感谢大家的订阅➕ 和 喜欢💗 和 手里的小花花…

C++掉血迷宫

目录 开头程序程序的流程图程序游玩的效果下一篇博客要说的东西 开头 大家好&#xff0c;我叫这是我58。 程序 #include <iostream> #include <string> #include <cstring> using namespace std; enum RBYG {R 1,B 2,Y 4,G 7, }; struct heal {int ix…

python_uiautoanimation实现自动化微信聊天

文章目录 ⭐前言⭐微软inspect工具定位元素&#x1f496;工具查找属性 ⭐查找微信窗口&#x1f496;命令行查找运行窗口 ⭐查找微信的聊天窗口⭐封装发送消息⭐定时查询消息⭐结束 ⭐前言 大家好&#xff0c;我是yma16&#xff0c;本文分享python_uiautoanimation实现自动化微…

平价头戴式蓝牙耳机有哪些?四款公认平价性能超强品牌机型推荐

在追求高品质音乐体验的同时&#xff0c;许多消费者希望找到价格亲民的头戴式蓝牙耳机&#xff0c;市场上不乏性能卓越、价格实惠的产品&#xff0c;它们凭借出色的音质、舒适的佩戴体验和可靠的续航能力赢得了用户的青睐&#xff0c;那么在众多的头戴式蓝牙耳机内&#xff0c;…

提高数据集成稳定性:EMQX Platform 端到端规则调试指南

自 5.7.0 版本起&#xff0c;EMQX 支持了 SQL 调试&#xff0c;并支持在数据集成全流程中进行规则调试&#xff0c;使用户能够在开发阶段就全面验证和优化规则&#xff0c;确保它们在生产环境中的稳定高效运行。 点击此处下载 EMQX 最新版本&#xff1a;https://www.emqx.com/z…

移动开发(三):使用.NET MAUI打包第一个安卓APK完整过程

目录 一、修改AndroidManifest.xml 配置APP基本信息权限 二、修改项目属性调整输出Android包格式为APK 三、项目发布 四、APP分发 五、总结 之前给大家介绍过使用使用.NET MAUI开发第一个安卓APP,今天给大家介绍如何打包成APK,然后安装到安卓手机正常运行。这里还是沿用…

java序列化对象后读取数据错误的问题

今天学到了对象的序列化&#xff0c;就是将对象写入到文件中去&#xff0c;大家要直到我们普通的输入输出文件只是把数据的值写入了文件&#xff0c;而没有把数据的类型与之绑定&#xff0c;比如我向文件中写入100&#xff0c;那么这是字符串”100“还是整数100还是高精度浮点数…

算法.图论-建图/拓扑排序及其拓展

文章目录 建图的三种方式邻接矩阵邻接表链式前向星 拓扑排序拓扑排序基础原理介绍拓扑排序步骤解析拓扑排序模板leetcode-课程表 拓扑排序拓展食物链计数喧闹与富有并行课程 建图的三种方式 我们建图的三种方式分别是邻接矩阵, 邻接矩阵, 链式前向星 邻接矩阵 假设我们的点的…

Android14请求动态申请存储权限

Android14请求动态申请存储权限 Android14和Android15存储权限有增加多了选择部分&#xff0c;还是全部。一个小小的存储权限真的被它玩出了花来。本来Android13就将存储权限进行了3个细分&#xff0c;是图片&#xff0c;音频还是视频文件。 步骤一&#xff1a;AndroidManife…

24年蓝桥杯及攻防世界赛题-MISC-2

11 Railfence fliglifcpooaae_hgggrnee_o{cr} 随波逐流编码工具 分为5栏时,解密结果为:flag{railfence_cipher_gogogo} 12 Caesar rxms{kag_tmhq_xqmdzqp_omqemd_qzodkbfuaz} mode1 #12: flag{you_have_learned_caesar_encryption} 随波逐流编码工具 13 base64 base64解…

【machine learning-十-梯度下降-学习率】

学习率 学习率不同的学习率 在梯度下降算法中&#xff0c;学习率的选择很重要&#xff0c;不恰当的选择&#xff0c;甚至可能导致损失发散&#xff0c;而非收敛&#xff0c;下面就看一下学习率的影响。 学习率 学习率是下图中的红框圈出来的部分&#xff0c; 学习率是模型的超…

虹科干货 | CAN/CAN FD故障揭秘:快速排查与解决技巧

是否在处理CAN总线问题时感到头疼&#xff1f;是否在寻找简单直接的方法来解决那些看似复杂的连接故障&#xff1f;本文将为您提供实用技巧&#xff0c;让您能够轻松应对这些难题。 CAN总线因其高效、可靠的数据交换能力&#xff0c;在汽车、工业控制、航空航天等多个关键领域得…

《黑神话悟空》开发框架与战斗系统解析

本文主要围绕《黑神话悟空》的开发框架与战斗系统解析展开 主要内容 《黑神话悟空》采用的技术栈 《黑神话悟空》战斗系统的实现方式 四种攻击模式 连招系统的创建 如何实现高扩展性的战斗系统 包括角色属性系统、技能配置文件和逻辑节点的抽象等关键技术点 版权声明 本…

Linux Vim编辑器常用命令

目录 一、命令模式快捷键 二、编辑/输入模式快捷键 三、编辑模式切换到命令模式 四、搜索命令 注&#xff1a;本章内容全部基于Centos7进行操作&#xff0c;查阅本章节内容前请确保您当前所在的Linux系统版本&#xff0c;且具有足够的权限执行操作。 一、命令模式快捷键 二…

图像生成大模型imagen

Imagen 是由谷歌研究团队开发的一种先进的图像生成大模型。它基于文本描述生成高质量的图像&#xff0c;是人工智能在生成视觉内容方面的一大突破。 Imagen 的主要特点包括&#xff1a; 1. 高分辨率和高质量&#xff1a;Imagen 生成的图像具有高分辨率和高质量&#xff0c;细…

springboot宠物智慧医院-计算机毕业设计源码99362

目录 摘要 1 绪论 1.1 选题背景与意义 1.2国内外研究现状 1.3微信开发者工具 1.4小程序框架以及目录结构介绍 1.5论文结构与章节安排 2系统分析 2.1 可行性分析 2.2 系统流程分析 2.2.1系统开发流程 2.2.2 用户登录流程 2.2.3 系统操作流程 2.2.4 添加信息流程 2…

模拟电路分析基础知识总结笔记(电子电路分析与设计前置知识)

必备条件 电子电路的直流分析电子电路的正弦稳态分析RC电路的瞬态分析戴维南定理和诺顿定理拉普拉斯变换&#xff08;看不懂&#xff0c;根本看不懂&#xff09; 电子电路的直流分析 欧姆定律 ​ 在恒定温度下&#xff0c;电压与电流成正比&#xff0c;电压与电阻成正比&am…

对 JavaScript 原型的理解

笔者看了一些有关 JavaScript 原型的文章有感而发&#xff0c;就将所感所悟画了下来如果有理解错误和不足的地方&#xff0c;欢迎各位大佬指出&#xff0c;笔者感激不尽